3.2.22 \(\int \frac {a+b \text {sech}^{-1}(c x)}{x^2 (d+e x^2)^2} \, dx\) [122]

3.2.22.1 Optimal result
3.2.22.2 Mathematica [C] (warning: unable to verify)
3.2.22.3 Rubi [A] (verified)
3.2.22.4 Maple [C] (warning: unable to verify)
3.2.22.5 Fricas [F]
3.2.22.6 Sympy [F]
3.2.22.7 Maxima [F(-2)]
3.2.22.8 Giac [F]
3.2.22.9 Mupad [F(-1)]

3.2.22.1 Optimal result

Integrand size = 21, antiderivative size = 844 \[ \int \frac {a+b \text {sech}^{-1}(c x)}{x^2 \left (d+e x^2\right )^2} \, dx=\frac {b c \sqrt {-1+\frac {1}{c x}} \sqrt {1+\frac {1}{c x}}}{d^2}-\frac {a}{d^2 x}-\frac {b \text {sech}^{-1}(c x)}{d^2 x}+\frac {e \left (a+b \text {sech}^{-1}(c x)\right )}{4 d^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}-\frac {e \left (a+b \text {sech}^{-1}(c x)\right )}{4 d^2 \left (\sqrt {-d} \sqrt {e}+\frac {d}{x}\right )}-\frac {b e \arctan \left (\frac {\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {-1+\frac {1}{c x}}}\right )}{2 d^2 \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}}}-\frac {b e \arctan \left (\frac {\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {-1+\frac {1}{c x}}}\right )}{2 d^2 \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}}}-\frac {3 \sqrt {e} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{5/2}}+\frac {3 \sqrt {e} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{5/2}}-\frac {3 \sqrt {e} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{5/2}}+\frac {3 \sqrt {e} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{5/2}}+\frac {3 b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{5/2}}-\frac {3 b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{5/2}}+\frac {3 b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{5/2}}-\frac {3 b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{5/2}} \]

output
-a/d^2/x-b*arcsech(c*x)/d^2/x-3/4*(a+b*arcsech(c*x))*ln(1-c*(1/c/x+(-1+1/c 
/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*e^(1/2)/( 
-d)^(5/2)+3/4*(a+b*arcsech(c*x))*ln(1+c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^ 
(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(5/2)-3/4*(a+b*a 
rcsech(c*x))*ln(1-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e 
^(1/2)+(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(5/2)+3/4*(a+b*arcsech(c*x))*ln(1+c* 
(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/ 
2)))*e^(1/2)/(-d)^(5/2)+3/4*b*polylog(2,-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/ 
x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(5/2)-3/4*b*p 
olylog(2,c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c 
^2*d+e)^(1/2)))*e^(1/2)/(-d)^(5/2)+3/4*b*polylog(2,-c*(1/c/x+(-1+1/c/x)^(1 
/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(5 
/2)-3/4*b*polylog(2,c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/ 
(e^(1/2)+(c^2*d+e)^(1/2)))*e^(1/2)/(-d)^(5/2)+1/4*e*(a+b*arcsech(c*x))/d^2 
/(-d/x+(-d)^(1/2)*e^(1/2))-1/4*e*(a+b*arcsech(c*x))/d^2/(d/x+(-d)^(1/2)*e^ 
(1/2))+b*c*(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)/d^2-1/2*b*e*arctan((1+1/c/x)^( 
1/2)*(c*d-(-d)^(1/2)*e^(1/2))^(1/2)/(-1+1/c/x)^(1/2)/(c*d+(-d)^(1/2)*e^(1/ 
2))^(1/2))/d^2/(c*d-(-d)^(1/2)*e^(1/2))^(1/2)/(c*d+(-d)^(1/2)*e^(1/2))^(1/ 
2)-1/2*b*e*arctan((1+1/c/x)^(1/2)*(c*d+(-d)^(1/2)*e^(1/2))^(1/2)/(-1+1/c/x 
)^(1/2)/(c*d-(-d)^(1/2)*e^(1/2))^(1/2))/d^2/(c*d-(-d)^(1/2)*e^(1/2))^(1...
 
3.2.22.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.35 (sec) , antiderivative size = 1305, normalized size of antiderivative = 1.55 \[ \int \frac {a+b \text {sech}^{-1}(c x)}{x^2 \left (d+e x^2\right )^2} \, dx =\text {Too large to display} \]

input
Integrate[(a + b*ArcSech[c*x])/(x^2*(d + e*x^2)^2),x]
 
output
((-4*a*Sqrt[d])/x + 4*b*c*Sqrt[d]*Sqrt[(1 - c*x)/(1 + c*x)] + (4*b*Sqrt[d] 
*Sqrt[(1 - c*x)/(1 + c*x)])/x - (2*a*Sqrt[d]*e*x)/(d + e*x^2) - (4*b*Sqrt[ 
d]*ArcSech[c*x])/x - (b*Sqrt[d]*e*ArcSech[c*x])/((-I)*Sqrt[d]*Sqrt[e] + e* 
x) - (b*Sqrt[d]*e*ArcSech[c*x])/(I*Sqrt[d]*Sqrt[e] + e*x) - 6*a*Sqrt[e]*Ar 
cTan[(Sqrt[e]*x)/Sqrt[d]] + 12*b*Sqrt[e]*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sq 
rt[d])]/Sqrt[2]]*ArcTanh[(((-I)*c*Sqrt[d] + Sqrt[e])*Tanh[ArcSech[c*x]/2]) 
/Sqrt[c^2*d + e]] - 12*b*Sqrt[e]*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/ 
Sqrt[2]]*ArcTanh[((I*c*Sqrt[d] + Sqrt[e])*Tanh[ArcSech[c*x]/2])/Sqrt[c^2*d 
 + e]] + (3*I)*b*Sqrt[e]*ArcSech[c*x]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e 
]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 6*b*Sqrt[e]*ArcSin[Sqrt[1 + (I*Sqrt[e])/ 
(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e]))/(c*Sqrt[d]*E 
^ArcSech[c*x])] - (3*I)*b*Sqrt[e]*ArcSech[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt 
[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] - 6*b*Sqrt[e]*ArcSin[Sqrt[1 - (I 
*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e]))/( 
c*Sqrt[d]*E^ArcSech[c*x])] - (3*I)*b*Sqrt[e]*ArcSech[c*x]*Log[1 - (I*(Sqrt 
[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 6*b*Sqrt[e]*ArcSin[S 
qrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d 
 + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + (3*I)*b*Sqrt[e]*ArcSech[c*x]*Log[1 + 
 (I*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] - 6*b*Sqrt[e] 
*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] ...
 
3.2.22.3 Rubi [A] (verified)

Time = 2.82 (sec) , antiderivative size = 904, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6857, 6374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {sech}^{-1}(c x)}{x^2 \left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 6857

\(\displaystyle -\int \frac {a+b \text {arccosh}\left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^2 x^4}d\frac {1}{x}\)

\(\Big \downarrow \) 6374

\(\displaystyle -\int \left (\frac {\left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) e^2}{d^2 \left (\frac {d}{x^2}+e\right )^2}-\frac {2 \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) e}{d^2 \left (\frac {d}{x^2}+e\right )}+\frac {a+b \text {arccosh}\left (\frac {1}{c x}\right )}{d^2}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a}{d^2 x}-\frac {b \text {arccosh}\left (\frac {1}{c x}\right )}{d^2 x}+\frac {e \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 d^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}-\frac {e \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 d^2 \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}-\frac {b e \arctan \left (\frac {\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {\frac {1}{c x}-1}}\right )}{2 d^2 \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}}}-\frac {b e \arctan \left (\frac {\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {\frac {1}{c x}-1}}\right )}{2 d^2 \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}}}-\frac {3 \sqrt {e} \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 (-d)^{5/2}}+\frac {3 \sqrt {e} \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {\sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {d c^2+e}}+1\right )}{4 (-d)^{5/2}}-\frac {3 \sqrt {e} \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 (-d)^{5/2}}+\frac {3 \sqrt {e} \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {\sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {d c^2+e}}+1\right )}{4 (-d)^{5/2}}+\frac {3 b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 (-d)^{5/2}}-\frac {3 b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 (-d)^{5/2}}+\frac {3 b \sqrt {e} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 (-d)^{5/2}}-\frac {3 b \sqrt {e} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 (-d)^{5/2}}+\frac {b c \sqrt {\frac {1}{c x}-1} \sqrt {1+\frac {1}{c x}}}{d^2}\)

input
Int[(a + b*ArcSech[c*x])/(x^2*(d + e*x^2)^2),x]
 
output
(b*c*Sqrt[-1 + 1/(c*x)]*Sqrt[1 + 1/(c*x)])/d^2 - a/(d^2*x) - (b*ArcCosh[1/ 
(c*x)])/(d^2*x) + (e*(a + b*ArcCosh[1/(c*x)]))/(4*d^2*(Sqrt[-d]*Sqrt[e] - 
d/x)) - (e*(a + b*ArcCosh[1/(c*x)]))/(4*d^2*(Sqrt[-d]*Sqrt[e] + d/x)) - (b 
*e*ArcTan[(Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*Sqrt[1 + 1/(c*x)])/(Sqrt[c*d + Sqr 
t[-d]*Sqrt[e]]*Sqrt[-1 + 1/(c*x)])])/(2*d^2*Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*S 
qrt[c*d + Sqrt[-d]*Sqrt[e]]) - (b*e*ArcTan[(Sqrt[c*d + Sqrt[-d]*Sqrt[e]]*S 
qrt[1 + 1/(c*x)])/(Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*Sqrt[-1 + 1/(c*x)])])/(2*d 
^2*Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*Sqrt[c*d + Sqrt[-d]*Sqrt[e]]) - (3*Sqrt[e] 
*(a + b*ArcCosh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] 
 - Sqrt[c^2*d + e])])/(4*(-d)^(5/2)) + (3*Sqrt[e]*(a + b*ArcCosh[1/(c*x)]) 
*Log[1 + (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e])])/(4* 
(-d)^(5/2)) - (3*Sqrt[e]*(a + b*ArcCosh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^Ar 
cCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(4*(-d)^(5/2)) + (3*Sqrt[e]* 
(a + b*ArcCosh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] 
+ Sqrt[c^2*d + e])])/(4*(-d)^(5/2)) + (3*b*Sqrt[e]*PolyLog[2, -((c*Sqrt[-d 
]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e]))])/(4*(-d)^(5/2)) - (3*b 
*Sqrt[e]*PolyLog[2, (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d 
+ e])])/(4*(-d)^(5/2)) + (3*b*Sqrt[e]*PolyLog[2, -((c*Sqrt[-d]*E^ArcCosh[1 
/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e]))])/(4*(-d)^(5/2)) - (3*b*Sqrt[e]*Poly 
Log[2, (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(4...
 

3.2.22.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6374
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d 
 + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6857
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x 
^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0 
] && IntegersQ[m, p]
 
3.2.22.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 109.90 (sec) , antiderivative size = 1007, normalized size of antiderivative = 1.19

method result size
parts \(\text {Expression too large to display}\) \(1007\)
derivativedivides \(\text {Expression too large to display}\) \(1034\)
default \(\text {Expression too large to display}\) \(1034\)

input
int((a+b*arcsech(c*x))/x^2/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
a*(-1/d^2*e*(1/2*x/(e*x^2+d)+3/2/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2)))-1/d^ 
2/x)+b*c*(-1/2*(-1+arcsech(c*x))/d^2*((-(c*x-1)/c/x)^(1/2)*c*x*((c*x+1)/c/ 
x)^(1/2)+1)/x/c+1/2*((-(c*x-1)/c/x)^(1/2)*c*x*((c*x+1)/c/x)^(1/2)-1)*(1+ar 
csech(c*x))/d^2/x/c-1/2*arcsech(c*x)/d^2*e*x*c/(c^2*e*x^2+c^2*d)+1/2*(-(c^ 
2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)* 
e*arctanh(c*d*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/((-c^2*d+2*(e*(c^2* 
d+e))^(1/2)-2*e)*d)^(1/2))/d^5/c^5-1/2*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e) 
*d)^(1/2)*(c^2*d*(e*(c^2*d+e))^(1/2)+2*c^2*d*e+2*e^2+2*(e*(c^2*d+e))^(1/2) 
*e)*e*arctanh(c*d*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/((-c^2*d+2*(e*( 
c^2*d+e))^(1/2)-2*e)*d)^(1/2))/d^5/c^5/(c^2*d+e)+1/2*((c^2*d+2*(e*(c^2*d+e 
))^(1/2)+2*e)*d)^(1/2)*(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*e*arctan(c*d*(1/c 
/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d) 
^(1/2))/d^5/c^5-1/2*((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(-c^2*d*(e 
*(c^2*d+e))^(1/2)+2*c^2*d*e+2*e^2-2*(e*(c^2*d+e))^(1/2)*e)*e*arctan(c*d*(1 
/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)* 
d)^(1/2))/d^5/c^5/(c^2*d+e)-3/4/d^2*e*sum(1/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(a 
rcsech(c*x)*ln((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)+dilog((_R 
1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c 
^2*d+4*e)*_Z^2+c^2*d))+3/4/d^2*e*sum(_R1/(_R1^2*c^2*d+c^2*d+2*e)*(arcsech( 
c*x)*ln((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)+dilog((_R1-1/...
 
3.2.22.5 Fricas [F]

\[ \int \frac {a+b \text {sech}^{-1}(c x)}{x^2 \left (d+e x^2\right )^2} \, dx=\int { \frac {b \operatorname {arsech}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2} x^{2}} \,d x } \]

input
integrate((a+b*arcsech(c*x))/x^2/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*arcsech(c*x) + a)/(e^2*x^6 + 2*d*e*x^4 + d^2*x^2), x)
 
3.2.22.6 Sympy [F]

\[ \int \frac {a+b \text {sech}^{-1}(c x)}{x^2 \left (d+e x^2\right )^2} \, dx=\int \frac {a + b \operatorname {asech}{\left (c x \right )}}{x^{2} \left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate((a+b*asech(c*x))/x**2/(e*x**2+d)**2,x)
 
output
Integral((a + b*asech(c*x))/(x**2*(d + e*x**2)**2), x)
 
3.2.22.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {sech}^{-1}(c x)}{x^2 \left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsech(c*x))/x^2/(e*x^2+d)^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.22.8 Giac [F]

\[ \int \frac {a+b \text {sech}^{-1}(c x)}{x^2 \left (d+e x^2\right )^2} \, dx=\int { \frac {b \operatorname {arsech}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2} x^{2}} \,d x } \]

input
integrate((a+b*arcsech(c*x))/x^2/(e*x^2+d)^2,x, algorithm="giac")
 
output
integrate((b*arcsech(c*x) + a)/((e*x^2 + d)^2*x^2), x)
 
3.2.22.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {sech}^{-1}(c x)}{x^2 \left (d+e x^2\right )^2} \, dx=\int \frac {a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )}{x^2\,{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((a + b*acosh(1/(c*x)))/(x^2*(d + e*x^2)^2),x)
 
output
int((a + b*acosh(1/(c*x)))/(x^2*(d + e*x^2)^2), x)